
ht. J. Heat Maw Traqfer, Vol. 13, pp. 449458. Pcrgamcm Press 1970. Printed in Great Britain 

STABILITY OF BUOYANCY-DRIVEN CONVECTION 

IN A TILTED SLOT 
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(Received 21 July 1969 and in revisedform 25 September 1969) 

Ah&a&-The stability of buoyancy-driven convection in a slot, slightly tilted with respect to the hori- 
zontal, is investigated analytically on the basis of linear theory. For mathematical simplicity, the bound- 
aries are assumed free and isothermal. It is shown that the Rayleigh number and the wave number at the 
critical point have the same values as for an exactly horizontal slot, however, the pnzdicted motion, 
rather than being indeterminate, is one of longitudinal rolls with their axes aligned in the d&ction of the 
mean flow. This is in contrast to the analogous problem of convection in a vertical slot in which the 
secondary flow pattern is known to consist of transverse rolls, i.e. rolls with their axes normal to the mean 

motion. 

NOMENCLATURE 

amplification factor of the distur- 
bance [see equation (4)] ; 
heat capacity, evaluated at the tem- 
perature TO ; 
depth of fluid layer ; 
thermal conductivity of fluid, evalu- 
ated at the temperature TO ; 
pressure associated with the basic, 
i.e. the undisturbed, flow ; 

p, P’lP, u,z ; 
T,, T,, the temperatures at, respectively, the 

lower and upper plane ; 

T,, the arithmetic mean temperature 

Vi + Q/z; 
x, y, z, dimensionless Cartesian coordinates ; 
u, u, w, dimensionless velocity components 

in the x, y, z direction, respectively ; 

UC, characteristic velocity E ko/poc,,d ; 
U(y), the basic, i.e. unperturbed, velocity 

profile (dimensionless) ; 
V(y), defined by equation (4) ; 
R Rayleigh number 

~c&Ui - To) d3 

vk 

(all physical properties evaluated at 
temperature To ; g = gravitational 
acceleration ; ii = coefficient of volu- 
metric expansion). 

Greek letters 
NR wave numbers in the x and z direction, 

respectively [see equation (4)] ; 
dimensionless temperature 

e(rl)9 
V, 

P, 
a, 

t, t-3 

(T - %,)/(T, - T,); 
defined by equation (4); 
kinematic viscosity ; 
fluid density ; 
Prandtl number cpv/k (physical 
properties evaluated at To) ; 
angle of inclination of the slot with 
respect to the horizontal ; 
defined by equation (17). 

Superscripts 
I 

* Present address: Shell Development Co., Emeryville, ,’ primes denote dimensional quantities ; 
Calif. 9 denotes perturbation quantities. 
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1. INTRODUCLZON 

As A RESULT of intensive study, considerable 
progress has been achieved over the past 
fifty years or so in understanding the subject of 
buoyancy-driven convection in fluid layers 
heated from below. For example, using a classical 
linear stability analysis, it is possible to predict 
the conditions for the onset of this convective 
motion, as well as the characteristic scale of 
the resulting flow pattern [ 11. However, it is also 
well-known that, in a layer of unbounded 
horizontal extent, the flows that are possible 
according to linear theory form an infinitely 
degenerate set. Consequently, to obtain 
theoretically the actual flow structure that is 
realized physically in such a system, it is 
necessary to take the non-linear effects into 
account. Thus, it has been shown that con- 
vection near the critical point will consist of 
rolls if the fluid properties are temperature 
independent according to the Boussinesq 
approximation [2], or of hexagonal cells if 
these properties vary substantially across the 
fluid film [3, 41. These theoretical predictions 
are in good agreement with experimental ob- 
servations [S-7]. 

In such cases, the inability of linear theory to 
predict the flow pattern near the critical point 
results from the absence of any preferred direc- 
tion along the two horizontal planes that confine 
an otherwise unbounded fluid layer. It might 
be expected, therefore, that a linear analysis 
would lead to a unique flow structure, or at 
least to a degeneracy of lower order, for systems 
in which such a complete isotropy did not exist. 
Indeed, as shown recently by Davis [8] and by 
Segel [9], when the fluid is contained in a rec- 
tangular box, finite rolls with their axes parallel 
to the shorter side are predicted on the basis 
solely of a linear treatment. This is consistent 
with Koschmieder’s observations [6] who found 
that, near the critical point, the cell pattern that 
emerges is strongly influenced by the geometry 
of the lateral boundaries. 

In this note we shall consider another example 
on this subject in which a unique flow pattern 

results from linear theory. This is the problem 
of buoyancy-driven convection in a fluid layer 
bounded by two infinite parallel surfaces, tilted 
at a small angle, cp, with respect to the horizontal. 
Here, a basic flow sets in which becomes 
unstable whenever the temperature difference 
between the two planes (with the bottom plane 
kept warmer than the top) exceeds a certain 
critical value. The similarity between this and 
the usual case in which the planes are exactly 
horizontal is of course evident ; in fact, both the 
method of solution and some of the principal 
results of the linear stability analysis are almost 
identical. However, it will be seen that, although 
the critical wave number will remain unaffected 
by tilting the planes a small amount, a preferred 
mode will emerge in the form of rolls having 
their axes along the direction of the mean 
motion. Hence, owing to the existence of this 
basic flow which imparts a definite structure 
to the undisturbed system, the degeneracy 
usually associated with convection problems 
of this type will be removed. 

2. BASIC EQUATIONS AND SOLUTION OF THE 
LINEAR STABILITY PROBLEM 

The coordinate system is chosen as shown 
in Fig. 1. Here, for the sake of mathematical 
simplicity, the two boundary surfaces y’ = 0, 
d are taken to be free and maintained at constant 
temperatures T1 and T2, respectively. It is 
convenient to introduce the non-dimensional 
quantities 

P’ 
p=---- 

POV 

To = %T, + T,), 

T - To 
0=-----, 

T - T, 

in which a prime refers to a dimensional variable 
and a subscript 0 to a physical property evaluated 
at the temperature T,. Throughout this analysis 
the familiar Boussinesq approximation [l] will 
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be invoked, according to which the physical are next introduced into the basic equations. 
properties are assumed to be temperature Neglecting the non-linear terms and dropping 
independent except for the density appearing the carets yields 
in the buoyancy term. 

Letting 

e = 1 - 2Y, U = U(Y), v = w = 0, 

$+ V(y)~+vD[I 

8P 
it can easily be shown that the basic solution of = oR9siny, - - dx f ovzu 

the appropriate governing equations reduces to 
C?V 

u = U(Y)=Rsinq 
{ 

f- ;++2 
1 

;+ U(y)T&= 
3P ~R~COS~ -- + crv2v 
aY 

where PO is a constant, R is the Rayleigh number 
in terms of T, - T,, and rr the Prandtl number. 
This solution indicates that no matter how small 
the inclined angle ~0, a shear-like flow in the 
x-direction [u = U(y)] willalwaysbeestablished, 
and that even in the presence of such a motion, 
the transport of heat from the lower to the 
upper plane will be due to conduction alone 
provided no lateral boundaries exist. 

Direction of gravity where 

where 

d 
D = -, 

a2 a* 

dy 
and t2=--+ a”, 

ax2 i3y2 azz‘ 

Cross differentiating to eliminate the pressure 
term and further differentiating in x and z 
to allow elimination of u and w, gives 

6V4v - 2 V2v- V(y) ; V2v + gD’U 

a28 
= oRsinq--- - hay CR cos qV;S (3) 

FIG. 1. The coordinate system. V: = V2 - D2. 

Following the usual approach of linear Equation (3) can be simplified by assuming 
stability theory, the fo~lo~g ~rturbation solutions of the form 
quantities r& y, z, t) = V(y) exp (i@x f #Iz - ct)] 
u = WY) + %x5 Y, 21, fl = ofx, Y, z,), eb, Y, Z, t) = e(y) exp (i(ax + BZ - ct)) 

(4) 

w = N& Y, 2) 

8 = 1 - 2y + 0(x, y,z), 
of which the real parts represent the actual 

P = P(y) + fix, y, z) physical quantities. The wave numbers, a and 8, 
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are real and the growth rate, c, is generally 
complex. In terms of (4) equation (3) becomes 

x [ID” - ix2 - /?‘I - D2U V(y) 

= oR sin cp. iaDB(y) + oR(d + p2)0(y).cos q 

[D’ - a2 - p’ + ic - i&J(y)] e(y) 

+ 2T/(y) = 0, (5) 

with boundary conditions 

V(y) = D2V(y) = B(y) = 0 at y=O,l. (6) 

Equation (5) is the familiar Orr-Sommerfeld 
equation coupled with the energy equation. 
Recently, using the Galerkin method, Vest and 
Arpaci [lo] developed an approximate solution 
to this system for the case cp = 90”, and their 
results will be discussed later on. Here, since 
the present study is restricted to small inclined 
angles, cp, the above equation will be solved by a 
mu’ch simpler perturbation technique using sin q 
as a small perturbation quantity. Thus, expand- 
ing the solutions of equation (5) into the form: 

{c, a, 8, R, V(Y), KY)) = b, ~0, PO, & V,(Y), &J(Y)} 

+ {cl, %P1,R1, V,(Y),(%Y)} sin cp 

+ (c2, a2, B2, R2, v2(y), B,(Y)) sin2 cp + . . 

(7) 

we obtain for the zeroth order system 

[o(D2 - cti - /3$ + ic,] (0’ - a; - S@ V,(y) 

- oR&$ f 8:) MY) = 0 

(D2 - a; - j$, + it@,(y) + 2V,Q = 0. 

Here, as is well known [I], the principle of the 
exchange of stabilities applies, hence ic, is real 
and the marginal state is characterized by 

co = 0. The solution is readily available and is 
given by 

V,(y) = sin ny, 

n2 

e,(y) = $ sin ZY, 

LX; + a; = -2 
27rr4 

R, = T (8) 

It should be pointed out that R. equals 27n4/8 
instead of 27~~14 as given in the standard 
references, [ 11, because the Rayliegh number was 
defined above in terms of half the temperature 
difference between the two bounding surfaces, 
y = 0, 1. 

Before solving the higher order equations, it 
is first necessary to solve the homogeneous 
adjoint problem. Applying a method similar to 
that used in analogous studies [Z], it can be 
shown that the latter is given by 

o(D2 - CC; - p;)’ v*(y) + 28*(y) = 0 

(D2 - a: - pi) e*(y) - oR,(az + pi) V*(y) = 0 

and that the boundary conditions are the same 
as (6). Hence 

V*(y) = V,(y) = sin ny, 

eyy) = _ $ 97c4 
00,(y) = - d s sin ny. (9) 

Substituting (7) into (5) we next obtain for the 
first order equations 

o(D2 - LX; - ,!I;)’ V, - aR,(ai + /3$t?, 

= 4(aoal + BON dD2 - $, - 8;) V, 
- iaoRoVoD2h + iaoRoh(D2 - a: - /?g) V, 
- ic,(D2 - ax - pg) V, + ia,oR,DB, 

+ aRk% + I%) e. + 2aRo(alao + /&PO) do, 

(0’ - a$ - pi) 8, + 21/, = ia,R,h0, - icleo 

+ 2ha0 + BIBo)eo (10) 
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where h(y) is given by 

Since the inhomogeneous part of equation (10) 
must be orthogonal to the homogeneous adjoint 
solution, the eigenvalue, R,, can be computed 
as follows : Multiplying the first equation in (10) 
by V* and the second by f?*, summing and then 
integrating from y = 0 to y = 1, yields 

Since RI is real, ct must be imaginary. Thus, 
to this order, there is no oscillatory motion and 
at the neutral state, c1 and hence R, must equal 
zero. 

fn view of (8) and the fact that c1 and R, are 
both equal to zero, equation (10) becomes 

27x6 
- -i+W) 

9n3 
= ia,----crcosrcy - icr, 

2 

Further elimination of 0, yields 

where 

with boundary conditions 

5, = LWI = 0 at y = 0,l 

at y = 0, 

04-i;i1 = - y at y=l. 

Equation (12) can be simplified by substituting 

f%(~) = h_My) + 2(w0 + BJ0) MA. 

Then 

+y($-f.k)sin7rY (14) 

B,(Y) = &sin ny. (15) 

Clearly, 

P,(y) = - $ sin ICY. 

As for @‘Y) and B,(Y), these had to be obtained 
via a numerical solution of equations (13) and 
(14) and are shown in Figs. 2 and 3. As required 
by their governing equations and the associated 
boundary conditions, both fusions are anti- 
symmetric with respect to the mid-pointy = 0.5. 
Also, it is apparent from Fig 2 that, for Prandtl 
numbers higher than la, the magnitude of 2V, 
is much less than that of the other term in the 
right hand side of equation (14), hence one 
would expect e,(y) to be very insensitive to the 
Prandtl number. This was borne out by the 
numerical solutions to equation (14) which, for 
G 2 1, could be represented to within a few 
per cent by means of @t(y) z -0% sin 2ny. 
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Since the eigenvalue R, is zero at the neutral Since both VI(y) and 8,(y) are anti-symmetric 
state, it is necessary to compute R2. This can be with respect to y = 0.5, k,(e) must vanish. As 
achieved from the solvability condition of the for k,(g), this was evaluated numerically at 
second order equation. The latter is given by different Prandtl numbers and is seen tabulated 

where 

c[ = 2ara0 + 2BtBor i = 2a2a0 + af 

+ W2PO f I% (17) 

Again, multiplying the first equation in (16) by 
V* and the second by 8*, summing and inte- 
grating, yields 

R2 = :R, - aiR,kl(o) - 3ia,%kz(o) 

9n2 
+t<” -ic2-b 1 +t 

i > 
(18) 

where 

and 

- aDB,] V* - h@*}dy 

+ aRo& + 8,tP 1 I dy 

in Table 1. Clearly, k,(o) is everywhere negative. 
At the neutral state, c2 must be real. Since R, 

is real, the real and imaginary parts of equation 
(18) reduce, respectively, to 

and 

4 d 
c2= -3 e Q()<k2(cr) = 0. 

3z I+0 

To this order then, no oscillatory motions are 
possible at the neutral state. This is to be ex- 
pected, since the absence of a preferred direction 
for wave travel would suggest a stationary in- 
stability. 

Owing to the fact that k,(a) is negative, it is 
obvious that R, has a minimum value of i_R, 
when both a0 and t vanish. With a0 and 5 both 
zero, it is apparent from (8) and (17) that flo has 
a value of n/,/2 and that fll is zero. Furthermore, 
both V,(y) and t?,(y) are also zero. Thus, 
summa&ing the results obtained so far, we 
have that, at- the neutral state, 
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FIG. 2. The function V&J. a). 
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FIG. 3. The function B,(y, a). 
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a = a1 sin ~0 + O(sinz cp) 

fi = 5 + O(sin’ cp), c = 0(sin3 cp) 

R = T (1 + + sin2 cp) + 0(sin3 cp) (20) 

V(y) = sin ny + O(sin’ cp) 

8(y) = 3% sin 7ry + O(sin’ cp). 

It should be pointed out that if the Rayleigh 
number were defined in terms of g cos cp rather 
than g, then, to 0(sin2 rp), the critical Rayleigh 
number given above would simply reduce to 

These theoretical conclusions are in a sense 
rather similar to those arrived at by Gallagher 
and Mercer [l l] and by Deardorff [12] who 
examined the problem of gravitational insta- 
bility between horizontal plates in the presence 
of a small shear flow, a problem which has many 
points in common with that considered here. 
These authors found that, as in the present case, 
the critical Rayleigh number is smallest, and in 
fact the same as that for pure convection without 
shear, for longitudinal roll disturbances having 
their axes aligned in the direction of the mean 
flow (i.e. a0 = 0). For the other disturbances 
(a0 # 0), which generally lead to an oscillatory 
instability, the critical Rayleigh number was 

- k,i, 
0.1 1.0 
9.081 0,470 

- ___.~__ 

R,. In addition, it is evident from (4) that this 
neutral state corresponds to a longitudinal roll 
solution, i.e. to rolls parallel to the x-axis. 

3. DISCUSSION 

According to the results presented above, the 
Rayleigh number at the neutral state will have 
a minimum value R, cos cp for a steady longi- 
tudinal roll disturbance with its axis parallel to 
the direction of the basic flow and with wave 
number /I equal to that of the corresponding 
solution for an exactly horizontal layer. For 
other disturbances, i.e. for a, # 0, the critical 
Rayleigh number would be given by equation 
(19) and oscillatory motions would again be 
excluded. Thus, the linear stability theory, 
when applied to the system depicted in Fig. 1, 
leads to the very interesting prediction that, if 
the Rayleigh number is slowly increased past 
the critical point, the ensuing convective motion 
for small values of cp will consist of steady 
parallel rolls having a definite wave length and 
with their axes in the x-direction. 

2.0 10 104 
0.424 o-t17 n.419 

found to increase sharply with increasing 
Prandtl number. This last result differs from 
that obtained here in two respects: first, it was 
shown that the neutral state in the present 
problem remains stationary for all disturbance 
wave numbers. In addition, since the absolute 
value of k,(o) approaches a constant as the 
Prandtl number is increased, the critical Rayleigh 
number as given by (19) will also increase to an 
asymptotic value independent of 0. 

Undoubtedly, the problem bearing the closest 
resemblance to that being considered here is that 
of the stability of natural convection in a 
vertical slot. As mentioned earlier, this was 
studied by Vest and Arpaci [lo] who found that, 
owing to the absence of the term in equations 
(3) proportional to cos cp, Squire’s theorem 
could be extended to this problem. Conse- 
quently, the predicted flow pattern at the critical 
point, which was shown to be stationary and to 
be characterized by the Grashof rather than the 
Rayleigh number as is the case here, was that of 
transverse rolls, i.e. rolls having their axes 
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normal to the direction of the mean flow. This 
last result, confiied experimentally by Vest 
and Arpaci, differs of course from that of the 
present analysis in which longitudinal rolls were 
predicted at the point of instability. Thus, it 
would appear that, as cp is increased from 0 to 
!XY’, a transition, perhaps even a sharp one, 
should take place from s~tiona~ lon~tud~al 
to stationary transverse rolls. It would be of 
interest to try and observe this transition 
ex~~rn~~lly. 

The predicted flow pattern at the neutral 
state also seems to depend on whether the in- 
stability is primarily of hydraulic or of 
thermal (convective) origin. For example, ther- 
mal instability occurs when the layer is nearly 
horizontal and is heated from below, as in the 
present case. In contrast, when the layer is 
vertical or is positioned at such an angle that it 
corresponds to heating from above, then the 
mechanism of ins~bi~ty is hy~~yn~ic, i.e. it 
refers to the instability of two opposing con- 
vective streams. Within the transition range of 
the angle of ~clination both m~h~isms are 
active and lead to a rather complicated de- 
pendence of the critical Rayleigh number of cp 
and 4 which was recently determined by Birikh 
et af. [I31 for the special case of transverse rolls. 

Before closing, it is perhaps worth remarking 
that, although the present analysis has dealt for 
reasons of mathemati~l s~pli~ity only with the 
case of free, isothermal boundaries along the two 
planes, past experience would indicate that the 
principal conclusions of this study would not 
have been affected by the use of more realistic 
boundary conditions. However, to show this 

rigorously would have required considerable 
effort. 
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STABILITE DE LA CONVECTION DUE A LA BRAVITE DANS UNE FENTE INCLINEE 

R&sum&-La stabilite de la convection due & la gravitt? dans une fente, Iegerement in&h par rapport & 
l’horizontale, est &udiQ anaiytiquement sur la base de la theorie Ii&tire. Pour la simplicite mathtmatique, 
on suppose que les front&es sent libres et isothermes. On montre que le nombre de Rayleigh et le nombre 
d’onde au point critique ont les msmes valeurs que pour une fentc exactement horizontale; cependant, 
le mouvement p&vu, au lieu d&e ind~te~~~, con&e en rouleaux 1on~~diM~ avec dcs axes align& 
dans la direction de 1Ycoulement moyen. Ceci est en opposition aver fe probi&me analogue de la convection 
dans une fente verticale dans lcquel on sait que 1’6coulement sccondaire consiste en roulcaux transversaux, 

c’est-a-dire, en rouleaux avec des axes normaux a l’ecoulement moyen. 
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STABILITjiT DER NATORLICHEN KONVEKTION IN EINEM GENEIGTEN SPALT 

Zusammeafassung-Die Stabilitit der nattirlichen Konvektion in einem Spalt der &i&t gegen die Hori- 
zontale gene&t ist, wird analytisch auf Grund der Lmeartheorie untersucht, Zur mathematischen Verein- 
fachung sind die Berandungen aIs frei und isotherm angenommen. Es wit-d gezeigt, dass die Rayleigh-Zahl 
und die Wellenzahl am kritischen Punkt die gleichen Werte gebeu, wie beim genau horizontalen Spalt, 
doch ist die vorhergesagte Bewegung nicht unbestimmt, sondern eha f&e J3ewegung von L&g&lea 
deren Achsen in Richtung der mittleren Strbmung ausgerichtet sind. Dies steht im Gegensatz zum analogen 
Problem der Konvektion in senkrechten Spalten in welchen das Sekuncl&rstimungsmuster aus QuerrolIen 

besteht, d.h Rollen deren Achsen normal zur mittleren Bewegungsrichtung stehen. 

J’C’Io~~MHOCTb TEW2liMH IIPM HAJIMYYIM ECTECTBEHHOI4 
IiOHREICLlklII B HAECJIOHHO~ LlJEJIII 

_hIHOTaI(WI-h OcHORe ;IklHeiiHOii TeOpllM ZIHWII1TH’iWKEI HCCJleAYeTCR ~CTOikWBOCTb 

TeYf!HElR rIpI HWIki~IIH WTRCTBtY?HHOti KOHBeKlJIUI B cna6o HaKJlOH6HHOfi OTHOCIITGlbHO 

I%pH3OHTaJIIf ll&lH. &lfI 1IPOCTOTbI M~TeMaTMWCKRX paCWTOB I’IPHHRTO, ‘iT0 ‘CBep&bIe 

PpaHHIJbI FIBJIRH)TCR %WKOHWlHbIMPl II Il30Tf2PMRWCKHMM. noKa3aK0, ~TO KpxTepal Penen M 
BOJIHOBOf2 WXCJIO B KptiTWlWKOti TOqKe MMeI0T Te Hce 3HaYeHIIR, 9TO II AJIR WeJIM, PaCIIOJIO- 

WeHHOZi CTpOrO rOpH3OHTaJIbH0, OAHaKO paCqeTHOe TeqeHBe HMeeT BLlA IIpOrtOJIbHbIX BaJIOB 

C OCRMW, OpMeHTRpOBaHHbIMM B HaIIpaBJIeHMA 0CK0~~0r0 Amxemfi. 3~0~ pe3yxbTaT 

npOTllBOnOnOxerr pe3ynhTaTy, IIOZIJWHklOMy IIpll peUIeHHH aHaJIOI'HWI0~ 3aAaYH KOHBeKLWH 

B BepTLiKanbHOik lI(eJIH, KOr~aBTOpWlHOe TeqeHMe COCTOLlT 123 IIOFIepe'JHbIX BaJIOB,T.e.BaJIOB 

c OCIIMR, pacnono*eHmni~ nepIIeH~XK)'JIflpHO ~cH~BHOMY ~BXUfVSiU0. 


